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Abstract: A framework is used to find optimal solution for a non-linear programming problem involving generalized 
invexity. Mon d-Weir duality results using ƞ-approximation associated with primal objectives constituted using ƞ-
approximation. Further, various equivalence relations are obtaind. Duality results are proved. 

——————————      —————————— 
 

1. Introduction: Convexity plays an important role in non-linear programming problem with 

single and multiple objectives. In the recent past, several classes of generalized convex functions 

and their analogous results were established by weakening convexity assumption. First, 

Hanson[11] introduced the concept of invexity and related results. In Ref [10], Craven named 

them as invex function. The initiative given by Hanson inspired many researchers to develop and 

establish further generalization of convexity. 

The main purpose of this paper is to generate the different concepts of Antczak in [1], [2], [3], 

[4] to a case when the functions involved in objective as well as constraints are twice 

differentiable. For this purpose, we use Antczak’s second order ƞ-approximation method with 

respect to generalized invexity conditions. Further, 

 

2. Fundamental Concepts and Definitions 

The following definitions are used in the sequel. 

Definition 2.1: If f: X→R is a differentiable function on a nonempty open set X ⊂ Rn, then f is 

said to be a  ρ-invex (ρ-incave) at x ϵ X on X if, for for all x ϵ X, we have, 

f(xo)- f(µo) ≥ ∇f(µ) ƞT (x,µ) + ρ  ||θ (x,µ)||2  (1) 
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f(xo)- f(µo) ≤ ∇f(µ) ƞT (x,µ) + ρ  ||θ (x,µ)||2  (2) 

 

If the inequality (1) holds for any xX, then f is invex. Similarly, if the inequality (2) holds for 

any x ϵ X then f is     ρ-incave. 

 

Definition 2.2: Let X ⊂ Rn be an open nonempty set and let f: X→R be a differentiable function 

then, the function f is said to be ρ-pseudo-invex (ρ-pseudo-incave) at x ϵ X on X if, for all x ϵ X, 

we have, 

   ∇f(µ) ƞT (x,µ) + ρ ||θ (x,µ)||2 ≥ 0 

   ⇒ f(x) ≥ f(µ)     (3) 

and, ∇f(µ) ƞT (x,µ) + ρ ||θ (x,µ)||2 ≤ 0  

⇒ f(x) ≤ f(µ)     (4) 

 

Definition 2.3: Let X ⊂ Rn be an open nonempty set and let f: X→R be a differentiable function 

then, the function f is said to be ρ-quasi-invex (ρ-quasi-incave) at µ ϵ X on X if, for all x ϵ X, we 

have, 

∇f(µ) ƞT (x,µ) + ρ ||θ (x,µ)||2 > 0 

⇒ f(x) > f(µ) 

and, ∇f(µ) ƞT (x,µ) + ρ ||θ (x,µ)||2 < 0  

⇒ f(x) < f(µ) 

 

The following lemma is the consequence of the above definitions. 

 

Lemma 2.1. 

If f: X→R is a quasi- ρ-invex and pseudo- ρ-invex at at µ on X iff for all x ϵ X, we have, 

f(x) ≤ f(µ) ⇔ ∇f(µ) ƞT (x,µ) + ρ ||θ (x,µ)||2 ≤ 0 

According to Refs ([ ],[ ]), we have  

ρ-invexity ⇒ pseudo- ρ-invexity ⇒ quasi- ρ-invexity 

 

(NLMP) Consider the following nonlinear constrained mathematical programming problem 
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Min f(x) = (f1(x), f2(x), f3(x), ……, fp(x)) 

Subject to gj(x) ≤ 0, j=1,2,3,……, m; where fi: X→R and g= (g1, g2, g3, …… gm) are 

differentiable functions on an open set X ⊂ Rn. Let us denote the set of feasible solution in 

(NLMP) as  

F = {x← X: gj(x) ≤ 0, j=1,2,3,…..,m} 

 

 

Definition 2.5: Any point x�  X is known as an optimal point in (NLMP) if for all x← F, we 

have, 

f(x) ≥ f(x�) 

 

Note: According to Bazara et al [5], the Karush – Kuhn – Tucker condtion are necessary 

optimality for such optimization problems. But the converse may not be true. 

 

Theorem 2.6: According to Bazara et al [5], if  x� is an optimal solution in (NLMP), at which 

some constraint qualification C[12] satisfies, then ∃  ξ� ϵ R+
m, and ξ� ≥ 0, such that, 

∇f(x) + ξ� ∇g(x�) = 0 

ξ� g(x�) = 0 

ξ ≥ 0 

 

3. Optimality Criteria using ƞ-approximation 
 

Suppose x� is a feasible solution in (NLMP). Now, we considered Antczak [1] ƞ-approximated 

optimization problem (Pƞ(x�)) as 

Min f(x�) + ∇f(x�) ƞT (x, x�) subject to 

gj (x�) + ∇gj(x�) ƞT (x, x�) ≤ 0;  j=1,2,3,……….,m 

where f , g and x have their usual meanings. 

 

Let us denote the set of feasible solutions for (Pƞ (x�)) as 

F(x�) = { {xX: gj(x�) + ∇g  (x�) ƞT (x, x�) ≤ 0, j=1,2,3,…..,m} 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016                                                                         234 
ISSN 2229-5518   

IJSER © 2016 
http://www.ijser.org 

 

To state and prove optimality criteria and duality results, we need some extra conditions, which 

are imposed on the function ƞ. 

 

Condition (C): According to Antczak, the condition may be defined as: Let us denote by ƞ(.,,x�) 

the function          X→ ƞ (x, x�). It is known that ƞ satisfies the condition at a point x�. Further, 

when ƞ (.,,x�) is a differentiable function at the point x=x�, with respect to the first component and 

satisfies the conditions ƞ(x�,x�)=0 and ƞx(x�,x�)=α.1. Here α is any real number and ƞx is a first 

order derivative. 

 

Now Karush – Kuhn – Tucker optimality conditions (necessary) for the problem Pn(x�) have the 

following form: 

 

Theorem 3.1: If x� is an optimal solution in (Pn(x�)) at which a constrained constraint (ref [12]) is 

satisfied and we assume that ƞ also satisfies the condition (C) then ∃  ξ� ϵ R+
m, and ξ� ≥ 0, such 

that, 

     ∇f(x�) + ξ� ∇g(x�) = 0 

      ξ� g(x�) = 0 

           g ≥ 0 

 

Proof: Similar as in ref [1]. 

Note: From practical point of view, some extra care has been taken on the condition ƞx(x,x�)=α in 

the given condition (C). Without loss of generality, we can impose an extra condition, which was 

used earlier in ref [1]. By assuming this, the optimality condition for (NLMP) at Pn(x�) are the 

same. 

 

Theorem 3.2: If gj, j=1,2,3,……, m be a set of active constraint function at x� ϵ F. However, we 

assume that the set of active constraints are quasi- ρ-invex and pseudo- ρ-incave at x� on F, and 

then the set of feasible solutions for both the problems are same. 
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Proof: Similar to problem (NLMP) and Pn(x�). The following theorem shows the equivalence 

between (NLMP) and Pn(x�). 

 

Theorem 3.3: If x� is an optimal solution in (NLMP) and satisfies a suitable constraint 

qualification [12]at x�. If ƞ satisfies condition (C) then x� is also an optimal solution in (Pn(x�)). 

 

Proof: we prove this by contradiction. We assume that x� is optimal and satisfies a constraint 

qualification. Then, ∃  ξ� ≥ 0, such that the KKC are satisfied. Suppose x� is not optimal in (Pn(x�)) 

which mean ∃ x� feasible for (Pn(x�)) such that 

f(x�) + ∇f(x�) ƞT (x, x�) < f(x�) + ∇f(x�) ƞT (x, x�) + ρ||θ (x, x�)|| + ρ||θ (x, x�)||2 

 

and so ∇f(x�) ƞT (x, x�) + ρ||θ (x, x�)||2 < 0 

 

Since ξ� ≥ 0 and the feasibility of x� is in (Pn(x�)), 

 

we get  ξ�  g� (x�) + ξ�  ∇gj(x�) ƞT (x, x�) + ρ||θ (x, x�)||2 ≤ 0 

But, from known Karussh Kauhn Tucker, we obtain  

[∇f(x�) + ξ�  ∇gj(x�) ƞT (x�, x�) + ρ||θ (x�, x�)||2 < 0] 

 

which is a contradiction to our assumption. Then x� is an optimal in (Pn(x�)). 

 

We prove the following theorem by making use of ρ-invexity on both objective as well as 

constraint functions with the help of condition (C).  

 

Theorem 3.4: Suppose x� is known as an optimal solution in problem (Pn(x�)) and satisfies some 

constraint qualification (Ref [12]) at x�. Moreover, the function f and g are ρ-invex at x� on F with 

respect to same ƞ and θ, and ƞ satisfies condition (C), then x� is optimal in (P). 

 

Proof: We prove this result by using contradiction. 

 

Suppose x� is optimal in NLMP (Pn(x�)),  
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hence, the inequality  

f(x) + ∇f(x�) ƞT (x, x�) + ρ||θ (x, x�)||2 ≥ f(x�) + ∇f(x�) ƞT (x, x�) + ρ||θ (x, x�)||2  (5) 

holds for all x ϵ F. 

 

By 5, we have 

∇f(x�) ƞT (x, x�) + ρ||θ (x, x�)||2 ≥ 0      (6) 

Holds for all x ϵ F. 

 

Next, let us assume g is ρ-invex at x� on F. Then it easily follows that F ⊂ F(x�). Let us suppose 

that x� is not optimal solution in (NLMP). Then, ∃ x�, which is also feasible for (NLMP) such that  

f(x�) < f(x�).         (7) 

 

By x� ϵ F and from F ⊂ F(x�), it follows that x� is also feasible in (Pn(x�)). By assumption, f is ρ-

invex at x� on F, by using EQ.7, we obtain 

∇f(x�) ƞT (x�, x�) + ρ||θ (x�, x�)||2 < 0 which is a contradiction to EQ. 6. Hence x� is optimal in 

(NLMP). 

 

4. Duality 
In this section we generalize Mond – Weir type duality [11] of the (NLMP) which 

associated with ƞ-approximation of mathematical programming problem. 

 

Consider  

(NMWD) Max F(y) 

Subject to ∇f(y) + ξT ∇g(y) = 0 

  ξj
T gj(y) ≥ 0, j=1,2,3……,m 

  x, ξ ≥ 0. 

 

Let us denote the set of feasible solutions as  

 

M= {(Y, ξ) ϵ X x R+
m: ∇f(y) + ξT ∇gj(y) = 0, ξj gj(y) ≥ 0, j=1,2,3,….,m} 
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Also, Y={y ϵ X: (y, ξ) ϵ M} 

NMEDƞ (x�): 

Max f(x�) + F(x�) ƞT (y, x�) 

Subject to F(x�) + ξ G(x�) =0 

ξj (Gj (x�) + Gj(x�) ƞT (y,x�) ≥ 0  y ϵ x, ξ ≥ 0. 

 

Theorem 4.1: Strong Duality 

 

If x� is an optimal point in (NLMP) and satisfies a constraint qualification ([12]) at x�, Also, f and 

g are ρ-invex at x� on x with respect to ƞ and θ, Then ∃ ξ� > 0 such that (x�, ξ�) is optimal in 

(NMWD). 

 

Proof: Proof is similar. 

 

Theorem 4.2: Converse Duality 

 

If (y�, ξ�) is an optimal solution in (NMWD) such that g(y�) = 0. Further, we assume that the 

function f and g are ρ-invex at y� on X w.r.t some ƞ and θ. Then y� is an optimal solution in 

(NLMP). 

 

Proof: We prove this by contradiction. 

Now, we prove that (y�, ξ�) is also optimal in (NMWDƞ (y�)).  

We assume that (y�, ξ�) is not optimal Then, ∃ (y,ξ) in (NMWDƞ (y�)) such that  

 

f(y) +  f(y�) ƞT (y, y�) + ρ||θ (y, y�)||2 < f(y) +  f(y�) ƞT (y, y�) + ρ||θ (y, y�)||2   (8) 

 

⇒  f(y�) ƞT (y, y�) + ρ||θ (y, y�)||2 > 0    (9) 

 

By assumption, we have g(y�) = 0.  

 

Now, EQ. 9 gives 
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ξ (g(y�) +  g(y�) ƞT (y, y�) + ρ||θ (y, y�)||2 < 0 

 

This is a contradiction to our assumption.  

 

Again, we have to prove that y� is also an optimal solution in (NLMP(y�)).  

 

For this, consider an optimization problem of the form: 

(NLMP(y�)): Min f(y�) + f(y�) ƞT (x, y�) + ρ||θ (x, y�)||2 

 Subject to gj(y�) +  gj(y�) ƞT (x, y�) + ρ||θ (x, y�)||2 = 0,  x ϵ X 

 

Proof: The proof is based on contradiction. 

 

Let us assume that y� is not optimal in (NLMP(y�)). Then ∃ x, which is feasible in (NLMP(y�)), 

such that, 

 

f(y�) + f(y�) ƞT (x, y�) + ρ||θ (x, y�)||2 < f(y�) + f(y�) ƞT (y�, y�) + ρ||θ (x, y�)||2 

 

⇒ f(y�) ƞT (x, y�) + ρ||θ (x, y�)||2 < 0 
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